Illustration of qualitative DNA isolation
The qualitative analysis of DNA is explained in this section
Aim: To separate and visualize DNA bands by Agarose gel electrophoresis.
Introduction: Agarose gel electrophoresis is a powerful and widely used method that separates molecules on the basis of electrical charge, size, and shape. The method is particularly useful in separating charged biologically important molecules such as DNA (deoxyribonucleic acids), RNA (ribonucleic acids), and proteins. Agarose forms a gel like consistency when boiled and cooled in a suitable buffer.
Principle: The agarose gel contains molecule sized pores, acting like molecular sieves. The pores in the gel control the speed that molecules can move. DNA molecules possess a negative charge in their backbone structure due to the presence of PO4- groups thus this principle is exploited for its separation.
Smaller molecules move through the pores more easily than larger ones. Conditions of charge, size, and shape interact with one another depending on the structure and composition of the molecules, buffer conditions, gel thickness, and voltage. Agarose gels are made with between 0.7% (provides good resolution of large 5–10 kb DNA fragments) and 2% (good resolution for small 0.2–1 kb fragments). The gel setup provides wells for loading DNA in to it. The loaded DNA molecules move towards the positively charged electrode (anode) and get separated along the length of the gel. Ethidium bromide (EtBr), a chromogen is added to the gel to visualize the separated DNA under UV transillumination. EtBr intercalates between the bases and glows when UV radiation is passed through the gel.
Illustration of qualitative DNA isolation
Purpose of gel loading buffer
The loading buffer gives colour and density to the sample to make it easy to load into the wells. Also, the dyes are negatively charged in neutral buffers and thus move in the same direction as the DNA during electrophoresis. This allows you to monitor the progress of the gel. The gel loading dye possesses bromophenol blue and xylene cyanol. Density is provided by glycerol or
sucrose.
Xylene xyanol gives a greenish blue colour while bromophenol blue
provides bluish colored zone. The successful DNA run is determined by the presence of both the colored dye in the gel.
Materials Required for Qualitative Analysis of DNA
- Electrophoresis buffer: 1x TAE buffer
- Agarose ultra pure (DNA graded)
- Electrophoresis tank, gel tray, sample comb and power supply
- Plastic or insulation tape
- Ethidium bromide: 10 mg /ml stock solution
- 5x Gel loading dye
- DNA marker solution, DNA sample and gloves
PROCEDURE FOR QUALITATIVE ANALYSIS OF DNA
Making a 1% Agarose Gel
• Weigh 0.5 g agarose and dissolve it in 50 mL of 1x tris acetic acid EDTA (TAE) Buffer.
(Note: Use 250 ml conical flask for preparing 50 ml solution to avoid overflow of gel solution while heating and to avoid its loss.)
• Heat the solution over a hot plate to boiling constituency marked with a clear solution
• Leave the solution to cool and add 2μl of EtBr solution mix it well by gentle swirling.
• Pour it in the gel tray-comb set up. Also be sure the gel plates have been taped securely and contain the well combs prior to pouring
• Allow the solution to cool and harden to form gel.- Loading of Samples
• Carefully transfer the gel to the electrophoresis tank filled with 1x tris acetic acid EDTA (TAE) buffer.
• Prepare your samples [8 ul of DNA sample (0. 1 ug to 1 ug) and 2 ul of 5x gel loading dye] • Remove the comb and load the samples into the well.
• Connect appropriate electrodes to the power pack and run it at 50-100volts for 20min.
• Monitor the progress of the gel with reference to tracking dye
(Bromophenol blue). Stop the run when the marker has run 3/4 th of
the gel. - Examining the gel
• Place the gel on the UV-transilluminator and check for orange colored bands in the gel.
PRECAUTIONS:
- Wear gloves during the addition of EtBr and while handling the casted gel (EtBr is a potent carcinogen).
- Handling the gel should be careful as the gel may break due to improper handling.
- While performing the UV-trans illumination for visualising the bands, avoid direct contact and exposure to eyes.
Results and Discussion:
References: DEPARTMENT OF BIOTECHNOLOGY, SCHOOL OF BIOENGINEERING, SRM UNIVERSITY
Wow that was unusual. I just wrote an incredibly long comment but after I clicked submit my comment didn’t show up. Grrrr… well I’m not writing all that over again. Anyway, just wanted to say great blog!
thanks
thanks a bunch
MicroDok ll continue to do its best to make MicroDok.com and the study of microbiology a wonderful experience
Great ?V I should certainly pronounce, impressed with your website. I had no trouble navigating through all tabs and related information ended up being truly easy to do to access. I recently found what I hoped for before you know it at all. Reasonably unusual. Is likely to appreciate it for those who add forums or something, website theme . a tones way for your client to communicate. Excellent task..
Thanks for your comment
MicroDok
I genuinely value your work, Great post.
thanks a bunch